Detection of calprotectin in clinical fecal samples: A COMPARATIVE STUDY OF ACTIM® CALPROTECTIN RAPID TEST AND BÜHLMANN FCAL ELISA

Kanto Laura¹, Reinman Mirka¹, Korvuo Armi¹, Juhila Juuso¹.
¹Medix Biochemica, Klovinpellontie 3, FI-02180 Espoo, Finland

Calprotectin (Figure 1) is a pro-inflammatory, calcium-binding protein complex primarily secreted by neutrophils at the site of inflammation.⁵–⁷ Calprotectin is released and easily detected in the mucosa, where neutrophils accumulate. Analysis of fecal calprotectin is commonly used in clinical diagnostics and follow-up of inflammatory bowel diseases (IBD) – Crohn’s disease and ulcerative colitis – that are characterized by pathological inflammation of the bowel.⁴

Fecal calprotectin is a non-invasive, stable and sensitive biomarker of IBD. While several assays for the detection of fecal calprotectin have been developed, both quantitative differences and low intra-assay agreement have been observed between different commercial calprotectin assays.⁵⁶ These differences may be caused by variable extraction devices and assay procedures.

In this study the performance of the semi-quantitative Actim® Calprotectin rapid test was compared with a quantitative Bühlmann fCAL ELISA reference test. Actim Calprotectin is a rapid, one-step dipstick test that reports fecal calprotectin concentration at three clinically relevant cut-offs (Table 1). Actim Calprotectin distinguishes patients with healthy mucosa or irritable bowel syndrome (IBS), from those with pathologic inflammation of the bowel.

TABLE 1. The clinical significance of fecal calprotectin concentration ranges.

<table>
<thead>
<tr>
<th>Calprotectin concentration range</th>
<th>Clinical implication</th>
</tr>
</thead>
<tbody>
<tr>
<td><50 μg/g</td>
<td>No inflammation; possible IBS</td>
</tr>
<tr>
<td>50–200 μg/g</td>
<td>Mild inflammation</td>
</tr>
<tr>
<td>>200 μg/g</td>
<td>IBD</td>
</tr>
</tbody>
</table>

FIGURE 1. The complex of calprotectin heterodimers. Calprotectin subunits S100A8 (grey) and S100A9 (violet) each bind two calcium ions (blue). The model was generated from a publicly available calprotectin crystal structure (PDB ID: 1XK4) using PyMOL software.
Acknowledgements
We wish to thank our Laboratory Technicians Kirsti Pokka and Ulla Tienhaara for their excellent technical assistance in this study.

References